Kaltgebrannte Keramik

2023-01-05 16:51:24 By : Mr. Shahin Abdu

Mit einem my.chemie.de-Account haben Sie immer alles im Überblick - und können sich Ihre eigene Website und Ihren individuellen Newsletter konfigurieren.

Um alle Funktionen dieser Seite zu nutzen, aktivieren Sie bitte die Cookies in Ihrem Browser.

Ob beim Hobbytöpfern oder bei der Herstellung technischer Hochleistungskeramiken – verwendbar ist das Werkstück erst, nachdem es stundenlang bei hohen Temperaturen, meist oberhalb von 1000 °C, gebrannt wurde. Während der dabei stattfindenden Sinterung „verbacken“ die einzelnen Körnchen miteinander, das Material wird kompakter und erhält die notwendigen Eigenschaften wie mechanische Festigkeit. Dass Sintern auch bei wesentlich niedrigerenTemperaturen funktioniert, zeigen amerikanische Wissenschaftler in der Zeitschrift Angewandte Chemie. Ihr kalter Sinter-Prozess basiert auf der Zugabe geringer Wassermengen, die den Stofftransport beim Verdichten erleichtern.

„Schon seit der Steinzeit werden Keramiken durch Sintern bei hohen Temperaturen hergestellt“, berichtet Clive A. Randall von der Pennsylvania State University (USA), „so auch die Venus von Dolní Věstonice, eines der ältesten keramischen Erzeugnisse.“ Das traditionelle Brennen könnte jetzt für viele keramische Werkstoffe überflüssig werden, denn eine breite Palette anorganischer Materialien und Verbundstoffe kann auch zwischen Raumtemperatur und 200 °C verdichtet werden.

Beim konventionellen Hochtemperatur-Sintern werden einzelne keramische Pulverpartikel zu einem festen Körper verdichtet. Treibende Kraft ist die Verringerung der hohen Freien Oberflächenenergie des Pulvers durch eine Materialdiffusion – ein Vorgang, der erst bei sehr hohen Temperaturen abläuft. „Beim kalten Sintern sorgen dagegen Lösungseffekte in Wasser für die Materialverdichtung“, so Randall. „Diese finden bereits bei niedrigen Temperaturen statt – unter Druck innerhalb von Minuten statt Stunden.“

Auch wenn die Details für verschiedene Systeme variieren, so konnte doch für eine Reihe keramischer Materialien festgestellt werden, dass zunächst kleine Mengen Wasser als vorübergehende flüssige Phase scharfe Kanten an den Grenzflächen zwischen den Partikeln auflösen, was die Freie Oberflächenenergie des Pulvers verringert. Bei geeignet eingestellten Druck- und Temperaturverhältnissen diffundiert das gelöste Material durch die Flüssigkeit und schlägt sich dann bevorzugt außerhalb der Kontaktbereiche zwischen den Partikeln nieder. Dadurch schließen sich die Poren und das Material wird kompakter.

Randall: „Das kalte Sintern funktioniert für eine breite Palette anorganischer Verbindungen, wie Metalloxide, Karbonate und auch für Mehrstoff- und Verbundsysteme. Die Eigenschaften der kalt gesinterten Proben entsprachen denen konventionell gesinterter.“ Am Beispiel verschiedener Materialien, z.B. Natriumchlorid, Alkali-Molybdaten, Vanadiumoxid, hatten die Wissenschaftler den Prozess im Detail untersucht.

„Nach Verbundmaterialien aus Keramiken mit Metallen, Polymeren oder anderen Keramiken gibt es eine hohe Nachfrage, aber aufgrund von Unterschieden der thermischen Stabilität, der Schrumpfung und möglicher chemischer Unverträglichkeiten bei hohen Temperaturen lassen sie sich nicht so einfach brennen“, so Randall. „Diese Problematik würde beim kalten Sintern minimiert.“ Zudem eröffnen sich nachhaltigere und kostengünstigere Produktionsalternativen für keramische Materialien. Kalt gesinterte Verbundmaterialien könnten den Zugang zu Systemen mit neuen Eigenschaften für innovative Technologien eröffnen.

Derzeit sind Sie nicht in my.chemie.de eingeloggt. Daher können Sie maximal 5 Inhalte merken.

Meine Notiz: Notiz hinzufügen / bearbeiten

meine Merkliste Abbrechen Notiz speichern

Forscher entwickeln synthetische anaerobe Bakterien zur Abscheidung und Umwandlung von Methan

Methan ist ein starkes Treibhausgas, das nach Angaben der US-Umweltschutzbehörde pro Molekül 25-mal schädlicher für die Umwelt ist als Kohlendioxid. Bakterien am Meeresboden können Methan aus ihrer Umgebung entfernen, und zwar ganz ohne Sauerstoff, durch einen Prozess, der anaerobe Methanox ... mehr

Bioinspiriertes Protein schafft dehnbare 2D-Schichtmaterialien

Die Natur bringt geschichtete Materialien wie Knochen und Perlmutt hervor, die mit zunehmendem Wachstum unempfindlicher gegen Defekte werden. Jetzt haben Forscher mit Hilfe biomimetischer Proteine, die den Ringzähnen von Tintenfischen nachempfunden sind, geschichtete 2D-Verbundmaterialien g ... mehr

Neue Methode reinigt Wasserstoff aus Kohlenmonoxidgemischen

Die Raffination von Metallen, die Herstellung von Düngemitteln und der Betrieb von Brennstoffzellen für schwere Fahrzeuge sind alles Prozesse, die gereinigten Wasserstoff erfordern. Die Reinigung bzw. Abtrennung dieses Wasserstoffs aus einem Gemisch anderer Gase kann jedoch schwierig sein u ... mehr

Endlich: Widerstandsfähiger Kunststoff lässt sich recyceln

Nylon-6 ist ein widerstandsfähiger, nicht bioabbaubarer Kunststoff, der sich mit konventionellen Ansätzen nicht recyceln lässt. Einen neuen Recyclingweg für Nylon-6 stellt ein US-amerikanisches Team jetzt in der Zeitschrift Angewandte Chemie vor: Mittels eines leicht zugänglichen Lanthan-Tr ... mehr

Ein Forschungsteam aus Litauen hat organische Farbstoffe entwickelt, die unter Lichtanregung besonders lang und intensiv nachleuchten. Möglich ist das intensive Nachleuchten in den Farben rot oder grün-blau durch eine Kombination aus einer thermisch aktivierten verzögerten Fluoreszenz mit a ... mehr

Ammoniak wird großtechnisch im Haber-Bosch-Verfahren gewonnen, wofür jedoch viel Energie und Wasserstoff benötigt werden. Einen viel milderen Reaktionsweg stellt nun ein Forschungsteam in der Zeitschrift Angewandte Chemie vor. Demnach können reaktive Borverbindungen den Luftstickstoff sehr ... mehr

Lesen Sie alles Wissenswerte über unser Fachportal chemie.de.

Erfahren Sie mehr über das Unternehmen LUMITOS und unser Team.

Erfahren Sie, wie LUMITOS Sie beim Online-Marketing unterstützt.

© 1997-2023 LUMITOS AG, All rights reserved